Scenery Tumblr Themes
My specialty is neuroscience and physiology, but I love all sciences, athletics, healthy food and fun people.

I love interaction and scientific dicussion. Never be afraid to ask me questions. I may not have the answer, but I'll be damned if I haven't learned how to do a good, quick Google Scholar search to find out.

In addition I like to look at non-science related cute animal pictures, art and funny comics too :)

Hope you enjoy my blog but please, feel free to leave suggestions for improvement!
"Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?"
“Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. 
Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). 
Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.”
Sources:
http://ajpheart.physiology.org/content/307/3/H346
http://aquanew.com/blog/wp-content/uploads/2013/03/Mitochondria.jpg

"Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?"

Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers.

Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1P < 0.05, respectively).

Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.”

Sources:

  1. http://ajpheart.physiology.org/content/307/3/H346
  2. http://aquanew.com/blog/wp-content/uploads/2013/03/Mitochondria.jpg


  1. lies reblogged this from safije2
  2. safije2 reblogged this from entrop-e
  3. entrop-e reblogged this from brains-and-bodies
  4. autolyses reblogged this from brains-and-bodies
  5. science-fantasy reblogged this from brains-and-bodies
  6. stephisaunicorn reblogged this from brains-and-bodies
  7. kcal113 reblogged this from brains-and-bodies
  8. wearemadeofstarstuff479 reblogged this from brains-and-bodies
  9. virgilshock reblogged this from brains-and-bodies
  10. lionandfox reblogged this from brains-and-bodies
  11. brains-and-bodies posted this